Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxins (Basel) ; 15(4)2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-37104179

RESUMEN

Kidney fibrosis is the common final pathway of nearly all chronic and progressive nephropathies. One cause may be the accumulation of senescent cells that secrete factors (senescence associated secretory phenotype, SASP) promoting fibrosis and inflammation. It has been suggested that uremic toxins, such as indoxyl sulfate (IS), play a role in this. Here, we investigated whether IS accelerates senescence in conditionally immortalized proximal tubule epithelial cells overexpressing the organic anion transporter 1 (ciPTEC-OAT1), thereby promoting kidney fibrosis. Cell viability results suggested that the tolerance of ciPTEC-OAT1 against IS increased in a time-dependent manner at the same dose of IS. This was accompanied by SA-ß-gal staining, confirming the accumulation of senescent cells, as well as an upregulation of p21 and downregulation of laminB1 at different time points, accompanied by an upregulation in the SASP factors IL-1ß, IL-6 and IL-8. RNA-sequencing and transcriptome analysis revealed that IS accelerates senescence, and that cell cycle appears to be the most relevant factor during the process. IS accelerates senescence via TNF-α and NF-ĸB signalling early on, and the epithelial-mesenchymal transition process at later time points. In conclusion, our results suggest that IS accelerates cellular senescence in proximal tubule epithelial cells.


Asunto(s)
Indicán , Tóxinas Urémicas , Humanos , Indicán/toxicidad , Indicán/metabolismo , Células Epiteliales/metabolismo , Túbulos Renales Proximales/metabolismo , Fibrosis
2.
Pediatr Nephrol ; 37(12): 2985-2996, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35286457

RESUMEN

Chronic kidney disease (CKD) is a major healthcare burden that takes a toll on the quality of life of many patients. Emerging evidence indicates that a substantial proportion of these patients carry a genetic defect that contributes to their disease. Any effort to reduce the percentage of patients with a diagnosis of nephropathy heading towards kidney replacement therapies should therefore be encouraged. Besides early genetic screenings and registries, in vitro systems that mimic the complexity and pathophysiological aspects of the disease could advance the screening for targeted and personalized therapies. In this regard, the use of patient-derived cell lines, as well as the generation of disease-specific cell lines via gene editing and stem cell technologies, have significantly improved our understanding of the molecular mechanisms underlying inherited kidney diseases. Furthermore, organs-on-chip technology holds great potential as it can emulate tissue and organ functions that are not found in other, more simple, in vitro models. The personalized nature of the chips, together with physiologically relevant read-outs, provide new opportunities for patient-specific assessment, as well as personalized strategies for treatment. In this review, we summarize the major kidney-on-chip (KOC) configurations and present the most recent studies on the in vitro representation of genetic kidney diseases using KOC-driven strategies.


Asunto(s)
Dispositivos Laboratorio en un Chip , Insuficiencia Renal Crónica , Humanos , Calidad de Vida , Riñón , Pruebas Genéticas , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/terapia
3.
Cells ; 11(1)2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35011739

RESUMEN

Nephropathic cystinosis is a rare and severe disease caused by disruptions in the CTNS gene. Cystinosis is characterized by lysosomal cystine accumulation, vesicle trafficking impairment, oxidative stress, and apoptosis. Additionally, cystinotic patients exhibit weakening and leakage of the proximal tubular segment of the nephrons, leading to renal Fanconi syndrome and kidney failure early in life. Current in vitro cystinotic models cannot recapitulate all clinical features of the disease which limits their translational value. Therefore, the development of novel, complex in vitro models that better mimic the disease and exhibit characteristics not compatible with 2-dimensional cell culture is of crucial importance for novel therapies development. In this study, we developed a 3-dimensional bioengineered model of nephropathic cystinosis by culturing conditionally immortalized proximal tubule epithelial cells (ciPTECs) on hollow fiber membranes (HFM). Cystinotic kidney tubules showed lysosomal cystine accumulation, increased autophagy and vesicle trafficking deterioration, the impairment of several metabolic pathways, and the disruption of the epithelial monolayer tightness as compared to control kidney tubules. In particular, the loss of monolayer organization and leakage could be mimicked with the use of the cystinotic kidney tubules, which has not been possible before, using the standard 2-dimensional cell culture. Overall, bioengineered cystinotic kidney tubules recapitulate better the nephropathic phenotype at a molecular, structural, and functional proximal tubule level compared to 2-dimensional cell cultures.


Asunto(s)
Bioingeniería , Cistinosis/patología , Túbulos Renales Proximales/patología , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animales , Autofagia , Biomarcadores/metabolismo , Línea Celular , Cistina/metabolismo , Células Epiteliales/patología , Fluoresceína-5-Isotiocianato/metabolismo , Humanos , Inulina/metabolismo , Ácidos Cetoglutáricos/metabolismo , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Membranas Artificiales , Metabolómica , Fenotipo , Análisis de Componente Principal , Serina-Treonina Quinasas TOR/metabolismo
4.
Cells ; 10(12)2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34943802

RESUMEN

Nephropathic cystinosis is a rare disease caused by mutations of the CTNS gene that encodes for cystinosin, a lysosomal cystine/H+ symporter. The disease is characterized by early-onset chronic kidney failure and progressive development of extra-renal complications related to cystine accumulation in all tissues. At the cellular level, several alterations have been demonstrated, including enhanced apoptosis, altered autophagy, defective intracellular trafficking, and cell oxidation, among others. Current therapy with cysteamine only partially reverts some of these changes, highlighting the need to develop additional treatments. Among compounds that were identified in a previous drug-repositioning study, disulfiram (DSF) was selected for in vivo studies. The cystine depleting and anti-apoptotic properties of DSF were confirmed by secondary in vitro assays and after treating Ctns-/- mice with 200 mg/kg/day of DSF for 3 months. However, at this dosage, growth impairment was observed. Long-term treatment with a lower dose (100 mg/kg/day) did not inhibit growth, but failed to reduce cystine accumulation, caused premature death, and did not prevent the development of renal lesions. In addition, DSF also caused adverse effects in cystinotic zebrafish larvae. DSF toxicity was significantly more pronounced in Ctns-/- mice and zebrafish compared to wild-type animals, suggesting higher cell toxicity of DSF in cystinotic cells.


Asunto(s)
Cistinosis/patología , Disulfiram/toxicidad , Enfermedades Renales/patología , Pruebas de Toxicidad , Acetilcisteína/farmacología , Animales , Apoptosis , Cistina/metabolismo , Cistinosis/orina , Modelos Animales de Enfermedad , Disulfuros/metabolismo , Disulfiram/química , Embrión no Mamífero/metabolismo , Humanos , Enfermedades Renales/orina , Larva/metabolismo , Ratones Noqueados , Pez Cebra/embriología
5.
EMBO Mol Med ; 13(7): e13067, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34165243

RESUMEN

Nephropathic cystinosis is a severe monogenic kidney disorder caused by mutations in CTNS, encoding the lysosomal transporter cystinosin, resulting in lysosomal cystine accumulation. The sole treatment, cysteamine, slows down the disease progression, but does not correct the established renal proximal tubulopathy. Here, we developed a new therapeutic strategy by applying omics to expand our knowledge on the complexity of the disease and prioritize drug targets in cystinosis. We identified alpha-ketoglutarate as a potential metabolite to bridge cystinosin loss to autophagy, apoptosis and kidney proximal tubule impairment in cystinosis. This insight combined with a drug screen revealed a bicalutamide-cysteamine combination treatment as a novel dual-target pharmacological approach for the phenotypical correction of cystinotic kidney proximal tubule cells, patient-derived kidney tubuloids and cystinotic zebrafish.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Cistinosis , Sistemas de Transporte de Aminoácidos Neutros/genética , Anilidas , Animales , Cisteamina , Cistinosis/tratamiento farmacológico , Humanos , Nitrilos , Fenotipo , Compuestos de Tosilo , Pez Cebra
6.
Trends Mol Med ; 27(7): 673-686, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33975805

RESUMEN

Nephropathic cystinosis is a severe, monogenic systemic disorder that presents early in life and leads to progressive organ damage, particularly affecting the kidneys. It is caused by mutations in the CTNS gene, which encodes the lysosomal transporter cystinosin, resulting in intralysosomal accumulation of cystine. Recent studies demonstrated that the loss of cystinosin is associated with disrupted autophagy dynamics, accumulation of distorted mitochondria, and increased oxidative stress, leading to abnormal proliferation and dysfunction of kidney cells. We discuss these molecular mechanisms driving nephropathic cystinosis. Further, we consider how unravelling molecular mechanisms supports the identification and development of new strategies for cystinosis by the use of small molecules, biologicals, and genetic rescue of the disease in vitro and in vivo.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/genética , Cistinosis/terapia , Terapia Genética/métodos , Mutación , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Cistinosis/genética , Cistinosis/patología , Humanos
7.
Invest New Drugs ; 39(1): 1-14, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32623551

RESUMEN

Ibrutinib is a first-in-class Bruton's kinase inhibitor used in the treatment of multiple lymphomas. In addition to CYP3A4-mediated metabolism, glutathione conjugation can be observed. Subsequently, metabolism of the conjugates and finally their excretion in feces and urine occurs. These metabolites, however, can reach substantial concentrations in human subjects, especially when CYP3A4 is inhibited. Ibrutinib has unexplained nephrotoxicity and high metabolite concentrations are also found in kidneys of Cyp3a knockout mice. Here, a mechanism is proposed where the intermediate cysteine metabolite is bioactivated. The metabolism of ibrutinib through this glutathione cycle was confirmed in cultured human renal proximal tubule cells. Ibrutinib-mediated toxicity was enhanced in-vitro by inhibitors of breast cancer resistance protein (BCRP), P-glycoprotein (P-gp) and multidrug resistance protein (MRP). This was a result of accumulating cysteine metabolite levels due to efflux inhibition. Finally, through inhibition of downstream metabolism, it was shown now that direct conjugation was responsible for cysteine metabolite toxicity.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Adenina/análogos & derivados , Antineoplásicos/efectos adversos , Antineoplásicos/farmacocinética , Piperidinas/efectos adversos , Piperidinas/farmacocinética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Adenina/administración & dosificación , Adenina/efectos adversos , Adenina/farmacocinética , Anciano , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citocromo P-450 CYP3A/metabolismo , Glutatión/metabolismo , Humanos , Túbulos Renales Proximales/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Proteínas de Neoplasias/antagonistas & inhibidores , Piperidinas/administración & dosificación
8.
Hypertension ; 75(5): 1242-1250, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32200675

RESUMEN

Megalin is an endocytic receptor contributing to protein reabsorption. Impaired expression or trafficking of megalin increases urinary renin and allowed the detection of prorenin, which normally is absent in urine. Here, we investigated (pro)renin uptake by megalin, using both conditionally immortalized proximal tubule epithelial cells and Brown Norway Rat yolk sac cells (BN16). To distinguish binding and internalization, cells were incubated with recombinant human (pro)renin at 4°C and 37°C, respectively. (Pro)renin levels were assessed by immunoradiometric assay. At 4°C, BN16 cells bound 3× more prorenin than renin, suggestive for a higher affinity of prorenin. Similarly, at 37°C, prorenin accumulated at 3- to 4-fold higher levels than renin in BN16 cells. Consequently, depletion of medium prorenin (but not renin) content occurred after 24 hours. No such differences were observed in conditionally immortalized proximal tubule epithelial cells, and M6P (mannose-6-phosphate) greatly reduced conditionally immortalized proximal tubule epithelial cells (pro)renin uptake, suggesting that these cells accumulate (pro)renin largely via M6P receptors. M6P did not affect (pro)renin uptake in BN16 cells. Yet, inhibiting megalin expression with siRNA greatly reduced (pro)renin binding and internalization by BN16 cells. Furthermore, treating BN16 cells with albumin, an endogenous ligand of megalin, also decreased binding and internalization of (pro)renin, while deleting the (pro)renin receptor affected the latter only. Exposing prorenin's prosegment with the renin inhibitor aliskiren dramatically increased prorenin binding, while after prosegment cleavage with trypsin prorenin binding was identical to that of renin. In conclusion, megalin might function as an endocytic receptor for (pro)renin and displays a preference for prorenin. Megalin-mediated endocytosis requires the (pro)renin receptor.


Asunto(s)
Endocitosis/fisiología , Precursores Enzimáticos/metabolismo , Túbulos Renales Proximales/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Renina/metabolismo , Amidas/farmacología , Animales , Línea Celular Transformada , Células Epiteliales/metabolismo , Fumaratos/farmacología , Humanos , Túbulos Renales Proximales/citología , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/antagonistas & inhibidores , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Fragmentos de Péptidos/metabolismo , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Ratas , Ratas Endogámicas BN , Ratas Sprague-Dawley , Receptor IGF Tipo 2/antagonistas & inhibidores , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes/metabolismo , Renina/química , Renina/efectos de los fármacos , Albúmina Sérica Bovina/metabolismo , Albúmina Sérica Bovina/farmacología , Especificidad por Sustrato , Temperatura , Tripsina/metabolismo , Saco Vitelino/citología , Receptor de Prorenina
9.
Mol Ther Nucleic Acids ; 18: 298-307, 2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31610379

RESUMEN

Antisense oligonucleotide therapy has been reported to be associated with renal injury. Here, the mechanism of reversible proteinuria was investigated by combining clinical, pre-clinical, and in vitro data. Urine samples were obtained from Duchenne muscular dystrophy (DMD) patients treated with drisapersen, a modified 2'O-methyl phosphorothioate antisense oligonucleotide (6 mg/kg). Urine and kidney tissue samples were collected from cynomolgus monkeys (Macaca fascicularis) dosed with drisapersen (39 weeks). Cell viability and protein uptake were evaluated in vitro using human conditionally immortalized proximal tubule epithelial cells (ciPTECs). Oligonucleotide treatment in DMD patients was associated with an increase in urinary alpha-1-microglobulin (A1M), which returned to baseline following treatment interruptions. In monkeys, increased urinary A1M correlated with dose-dependent accumulation of oligonucleotide in kidney tissue without evidence of tubular damage. Furthermore, oligonucleotides accumulated in the lysosomes of ciPTECs and reduced the absorption of A1M, albumin, and receptor-associated protein, but did not affect cell viability when incubated for up to 7 days. In conclusion, phosphorothioate oligonucleotides appear to directly compete for receptor-mediated endocytosis in proximal tubules. We postulate that oligonucleotide-induced low molecular weight proteinuria in patients is therefore a transient functional change and not indicative of tubular damage.

10.
Sci Rep ; 9(1): 14686, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31604983

RESUMEN

Complexes based on heavy metals have great potential for the treatment of a wide variety of cancers but their use is often limited due to toxic side effects. Here we describe the synthesis of two new cadmium complexes using N(4)-phenyl-2-formylpyridine thiosemicarbazone (L1) and 5-aminotetrazole (L2) as organic ligands and the evaluation of their anti-cancer and nephrotoxic potential in vitro. The complexes were characterized by Single-crystal X-ray data diffraction, 1HNMR, FT-IR, LC/MS spectrometry and CHN elemental analysis. Next, cytotoxicity of these cadmium complexes was evaluated in several cancer cell lines, including MCF-7 (breast), Caco-2 (colorectal) and cisplatin-resistant A549 (lung) cancer cell lines, as well as in conditionally-immortalized renal proximal tubule epithelial cell lines for evaluating nephrotoxicity compared to cisplatin. We found that both compounds were toxic to the cancer cell lines in a cell-cycle dependent manner and induced caspase-mediated apoptosis and caspase-independent cell death. Nephrotoxicity of these compounds was compared to cisplatin, a known nephrotoxic drug, in vitro. Our results demonstrate that compound {2}, but not compound {1}, exerts increased cytotoxicity in MCF-7 and A549 cell lines, combined with reduced nephrotoxic potential compared to cisplatin. Together these data make compound {2} a likely candidate for further development in cancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Cadmio/farmacología , Complejos de Coordinación/farmacología , Neoplasias/tratamiento farmacológico , Células A549 , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Cadmio/química , Ciclo Celular/efectos de los fármacos , Cisplatino/efectos adversos , Cisplatino/farmacología , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Ligandos , Células MCF-7 , Neoplasias/patología , Espectroscopía Infrarroja por Transformada de Fourier , Tetrazoles/síntesis química , Tetrazoles/química , Tetrazoles/farmacología , Tiosemicarbazonas/síntesis química , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología
11.
Oncotarget ; 10(51): 5332-5348, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31523392

RESUMEN

End-stage kidney disease represents irreversible kidney failure. Dialysis and transplantation, two main treatment options currently available, present various drawbacks and complications. Innovative cell-based therapies, such as a bioartificial kidney, have not reached the clinic yet, mostly due to safety and/or functional issues. Here, we assessed the safety of conditionally immortalized proximal tubule epithelial cells (ciPTECs) for bioartificial kidney application, by using in vitro assays and athymic nude rats. We demonstrate that these cells do not possess key properties of oncogenically transformed cells, including anchorage-independent growth, lack of contact inhibition and apoptosis-resistance. In late-passage cells we did observe complex chromosomal abnormalities favoring near-tetraploidy, indicating chromosomal instability. However, time-lapse imaging of ciPTEC-OAT1, confined to a 3D extracellular matrix (ECM)-based environment, revealed that the cells were largely non-invasive. Furthermore, we determined the viral integration sites of SV40 Large T antigen (SV40T), human telomerase (hTERT) and OAT1 (SLC22A6), the transgenes used for immortalization and cell function enhancement. All integrations sites were found to be located in the intronic regions of endogenous genes. Among these genes, early endosome antigen 1 (EEA1) involved in endocytosis, and BCL2 Like 1 (BCL2L1) known for its role in regulating apoptosis, were identified. Nevertheless, both gene products appeared to be functionally intact. Finally, after subcutaneous injection in athymic nude rats we show that ciPTEC-OAT1 lack tumorigenic and oncogenic effects in vivo, confirming the in vitro findings. Taken together, this study lays an important foundation towards bioartificial kidney (BAK) development by confirming the safety of the cell line intended for incorporation.

12.
Biomed Chromatogr ; 32(8): e4238, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29517154

RESUMEN

Nephropathic cystinosis is characterized by abnormal intralysosomal accumulation of cystine throughout the body, causing irreversible damage to various organs, particularly the kidneys. Cysteamine, the currently available treatment, can reduce lysosomal cystine and postpone disease progression. However, cysteamine poses serious side effects and does not address all of the symptoms of cystinosis. To screen for new treatment options, a rapid and reliable high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed to quantify cystine in conditionally immortalized human proximal tubular epithelial cells (ciPTEC). The ciPTEC were treated with N-ethylmaleimide, lysed and deproteinized with 15% (w/v) sulfosalicylic acid. Subsequently, cystine was measured using deuterium-labeled cystine-D4, as the internal standard. The assay developed demonstrated linearity to at least 20 µmol/L with a good precision. Accuracies were between 97.3 and 102.9% for both cell extracts and whole cell samples. Cystine was sufficiently stable under all relevant analytical conditions. The assay was successfully applied to determine cystine levels in both healthy and cystinotic ciPTEC. Control cells showed clearly distinguishable cystine levels compared with cystinotic cells treated with or without cysteamine. The method developed provides a fast and reliable quantification of cystine, and is applicable to screen for potential drugs that could reverse cystinotic symptoms in human kidney cells.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Cistina/análisis , Túbulos Renales Proximales/química , Túbulos Renales Proximales/citología , Espectrometría de Masas en Tándem/métodos , Línea Celular , Humanos , Límite de Detección , Modelos Lineales , Reproducibilidad de los Resultados
13.
Int J Mol Sci ; 18(12)2017 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-29186865

RESUMEN

As current kidney replacement therapies are not efficient enough for end-stage renal disease (ESRD) treatment, a bioartificial kidney (BAK) device, based on conditionally immortalized human proximal tubule epithelial cells (ciPTEC), could represent an attractive solution. The active transport activity of such a system was recently demonstrated. In addition, endocrine functions of the cells, such as vitamin D activation, are relevant. The organic anion transporter 1 (OAT-1) overexpressing ciPTEC line presented 1α-hydroxylase (CYP27B1), 24-hydroxylase (CYP24A1) and vitamin D receptor (VDR), responsible for vitamin D activation, degradation and function, respectively. The ability to produce and secrete 1α,25-dihydroxy-vitamin D3, was shown after incubation with the precursor, 25-hydroxy-vitamin D3. The beneficial effect of vitamin D on cell function and behavior in uremic conditions was studied in the presence of an anionic uremic toxins mixture. Vitamin D could restore cell viability, and inflammatory and oxidative status, as shown by cell metabolic activity, interleukin-6 (IL-6) levels and reactive oxygen species (ROS) production, respectively. Finally, vitamin D restored transepithelial barrier function, as evidenced by decreased inulin-FITC leakage in biofunctionalized hollow fiber membranes (HFM) carrying ciPTEC-OAT1. In conclusion, the protective effects of vitamin D in uremic conditions and proven ciPTEC-OAT1 endocrine function encourage the use of these cells for BAK application.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Toxinas Biológicas/toxicidad , Vitamina D/farmacología , Vitaminas/farmacología , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/metabolismo , Línea Celular , Supervivencia Celular , Citoprotección , Células Epiteliales/metabolismo , Humanos , Interleucina-6/metabolismo , Túbulos Renales Proximales/citología , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Estrés Oxidativo , Receptores de Calcitriol/metabolismo , Vitamina D3 24-Hidroxilasa/metabolismo
15.
Eur J Pharmacol ; 790: 99-108, 2016 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-27455903

RESUMEN

In this review we provide an overview of the expanding molecular toolbox that is available for gene based therapies and how these therapies can be used for a large variety of kidney diseases. Gene based therapies range from restoring gene function in genetic kidney diseases to steering complex molecular pathways in chronic kidney disorders, and can provide a treatment or cure for diseases that otherwise may not be targeted. This approach involves the delivery of recombinant DNA sequences harboring therapeutic genes to improve cell function and thereby promote kidney regeneration. Depending on the therapy, the recombinant DNA will express a gene that directly plays a role in the function of the cell (gene addition), that regulates the expression of an endogenous gene (gene regulation), or that even changes the DNA sequence of endogenous genes (gene editing). Some interventions involve permanent changes in the genome whereas others are only temporary and leave no trace. Efficient and safe delivery are important steps for all gene based therapies and also depend on the mode of action of the therapeutic gene. Here we provide examples on how the different methods can be used to treat various diseases, which technologies are now emerging (such as gene repair through CRISPR/Cas9) and what the opportunities, perspectives, potential and the limitations of these therapies are for the treatment of kidney diseases.


Asunto(s)
Terapia Genética/métodos , Riñón/fisiología , Regeneración/genética , Animales , Portadores de Fármacos/química , Vectores Genéticos/genética , Humanos
16.
Mol Pharm ; 13(3): 933-44, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26871298

RESUMEN

Apical transport is key in renal function, and the activity of efflux transporters and receptor-mediated endocytosis is pivotal in this process. The conditionally immortalized proximal tubule epithelial cell line (ciPTEC) endogenously expresses these systems. Here, we used ciPTEC to investigate the activity of three major efflux transporters, viz., breast cancer resistance protein (BCRP), multidrug resistance protein 4 (MRP4), and P-glycoprotein (P-gp), as well as protein uptake through receptor-mediated endocytosis, using a fluorescence-based setup for transport assays. To this end, cells were exposed to Hoechst33342, chloromethylfluorescein-diacetate (CMFDA), and calcein-AM in the presence or absence of model inhibitors for BCRP (KO143), P-gp (PSC833), or MRPs (MK571). Overexpression cell lines MDCKII-BCRP and MDCKII-P-gp were used as positive controls, and membrane vesicles overexpressing one transporter were used to determine substrate and inhibitor specificities. Receptor-mediated endocytosis was investigated by determining the intracellular accumulation of fluorescently labeled receptor-associated protein (RAP-GST). In ciPTEC, BCRP and P-gp showed similar expressions and activities, whereas MRP4 was more abundantly expressed. Hoechst33342, GS-MF, and calcein are retained in the presence of KO143, MK571, and PSC833, showing clearly redundancy between the transporters. Noteworthy is the fact that both KO143 and MK571 can block BCRP, P-gp, and MRPs, whereas PSC833 appears to be a potent inhibitor for BCRP and P-gp but not the MRPs. Furthermore, ciPTEC accumulates RAP-GST in intracellular vesicles in a dose- and time-dependent manner, which was reduced in megalin-deficient cells. In conclusion, fluorescent-probe-based assays are fast and reproducible in determining apical transport mechanisms, in vitro. We demonstrate that typical substrates and inhibitors are not specific for the designated transporters, reflecting the complex interactions that can take place in vivo. The set of tools we describe are also compatible with innovative kidney culture models and allows studying transport mechanisms that are central to drug absorption, disposition, and detoxification.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Túbulos Renales Proximales/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Células Cultivadas , Perros , Endocitosis/fisiología , Fluorescencia , Humanos , Túbulos Renales Proximales/citología , Células de Riñón Canino Madin Darby
18.
PLoS One ; 7(11): e50324, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209713

RESUMEN

Polycystic liver disease (PCLD) is an autosomal dominant disorder characterised by multiple fluid filled cysts in the liver. This rare disease is caused by heterozygous germline mutations in PRKCSH and SEC63. We previously found that, in patients with a PRKCSH mutation, over 76% of the cysts acquired a somatic 'second-hit' mutation in the wild type PRKCSH allele. We hypothesise that somatic second-hit mutations are a general mechanism of cyst formation in PCLD which also plays a role in PCLD patients carrying a SEC63 germline mutation. We collected cyst epithelial cells from 52 liver cysts from three different SEC63 patients using laser microdissection. DNA samples were sequenced to identify loss of heterozygosity (LOH) mutations and other somatic mutations in cyst epithelial DNA. We discovered somatic SEC63 mutations in patient 3 (1/14 cysts), but not in patient 1 and 2 (38 cysts). Upon review we found that the germline mutation of patient 1 and 2 (SEC63 c.1703_1705delAAG) was present in the same frequency in DNA samples from healthy controls, suggesting that this variant is not causative of PCLD. In conclusion, as somatic second-hit mutations also play a role in cyst formation in patients with a SEC63 germline mutation, this appears to be a general mechanism of cyst formation in PCLD.


Asunto(s)
Quistes/genética , Mutación de Línea Germinal , Heterocigoto , Hepatopatías/genética , Pérdida de Heterocigocidad , Proteínas de la Membrana/genética , Adulto , Alelos , Estudios de Casos y Controles , Femenino , Genotipo , Humanos , Inmunohistoquímica/métodos , Microdisección , Modelos Estadísticos , Chaperonas Moleculares , Mutación , Proteínas de Unión al ARN , Análisis de Secuencia de ADN
19.
Gastroenterology ; 141(6): 2056-2063.e2, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21856269

RESUMEN

BACKGROUND & AIMS: Heterozygous germline mutations in PRKCSH cause autosomal dominant polycystic liver disease (PCLD), but it is not clear how they lead to cyst formation. We investigated whether mutations in cyst epithelial cells and corresponding loss of the PRKCSH gene product (hepatocystin) contributed to cyst development. METHODS: Liver cyst material was collected through laparoscopic cyst fenestration from 8 patients with PCLD who had a heterozygous germline mutation in PRKCSH. Tissue sections from 71 cysts (2-14 per patient) were obtained for hepatocystin staining and mutation analysis. Cyst epithelium was acquired using laser microdissection; DNA was isolated and analyzed for loss of heterozygosity (LOH) and somatic mutations using restriction analysis and sequencing. Common single nucleotide polymorphisms (SNPs) in a 70-kilobase region surrounding the germline mutation were used to determine variations in the genomic region with LOH. RESULTS: The wild-type allele of PRKCSH was lost (LOH) in 76% of cysts (54/71). Hepatocystin was not detected in cyst epithelia with LOH, whereas heterozygous cysts still expressed hepatocystin. The variation observed in the LOH region analysis indicates that cysts develop independently. We also detected somatic mutations in PRKCSH in 17% (2/12) of the cysts without LOH. Trans-heterozygous mutations in SEC63 were not observed. CONCLUSIONS: Among patients with PCLD who have a heterozygous germline mutation in PRKCSH, we found secondary, somatic mutations (second hits) in more than 76% of the liver cyst epithelia. PCLD is recessive at the cellular level, and loss of functional PRKCSH is an important step in cystogenesis.


Asunto(s)
Quistes/genética , Glucosidasas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Hepatopatías/genética , Pérdida de Heterocigocidad , Mutación/genética , Adulto , Proteínas de Unión al Calcio , Quistes/fisiopatología , Análisis Mutacional de ADN , Femenino , Mutación de Línea Germinal , Humanos , Hepatopatías/fisiopatología , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
20.
J Hepatol ; 52(3): 432-40, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20138683

RESUMEN

Autosomal dominant polycystic liver disease (PCLD) is a rare progressive disorder characterized by an increased liver volume due to many (>20) fluid-filled cysts of biliary origin. Disease causing mutations in PRKCSH or SEC63 are found in approximately 25% of the PCLD patients. Both gene products function in the endoplasmic reticulum, however, the molecular mechanism behind cyst formation remains to be elucidated. As part of the translocon complex, SEC63 plays a role in protein import into the ER and is implicated in the export of unfolded proteins to the cytoplasm during ER-associated degradation (ERAD). PRKCSH codes for the beta-subunit of glucosidase II (hepatocystin), which cleaves two glucose residues of Glc(3)Man(9)GlcNAc(2) N-glycans on proteins. Hepatocystin is thereby directly involved in the protein folding process by regulating protein binding to calnexin/calreticulin in the ER. A separate group of genetic diseases affecting protein N-glycosylation in the ER is formed by the congenital disorders of glycosylation (CDG). In distinct subtypes of this autosomal recessive multisystem disease specific liver symptoms have been reported that overlap with PCLD. Recent research revealed novel insights in PCLD disease pathology such as the absence of hepatocystin from cyst epithelia indicating a two-hit model for PCLD cystogenesis. This opens the way to speculate about a recessive mechanism for PCLD pathophysiology and shared molecular pathways between CDG and PCLD. In this review we will discuss the clinical-genetic features of PCLD and CDG as well as their biochemical pathways with the aim to identify novel directions of research into cystogenesis.


Asunto(s)
Quistes/congénito , Hepatopatías/congénito , Proteínas de Unión al Calcio , Quistes/metabolismo , Glucosidasas/metabolismo , Glicosilación , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hepatopatías/metabolismo , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares , Proteínas de Unión al ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...